dr. M. Babaie

Assistant Professor
Electronic Circuits and Architectures (ELCA), Department of Microelectronics

PhD thesis (Jun 2016): Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications
Promotor: Bogdan Staszewski

Expertise: RF circuits

Themes: RF electronics


Masoud Babaie received the B.Sc. (Hons.) and M.Sc. degrees in electrical engineering from the Amirkabir University of Technology, Tehran, Iran, and the Sharif University of Technology, Tehran, in 2004 and 2006, respectively, and the Ph.D. (cum laude) degree from the Delft University of Technology, Delft, The Netherlands, in 2016.

He joined the Kavoshcom Research and Development Group, Tehran, in 2006, where he was involved in designing wireless communication systems. He was appointed a CTO of the company from 2009 to 2011. He was consulting for RF group of TSMC, Hsinchu, Taiwan, in 2013-2015, designing 28-nm All-Digital PLL and Bluetooth Low Energy transceiver chips. From 2014 to 2015, he was a Visiting Scholar Researcher with Berkeley Wireless Research Center, Berkeley, CA, USA, with the Group of Prof. A. Niknejad. Since Aug. 2016, he has joined the Delft University of Technology as an Assistant Professor. His current research interests include analog and RF/millimeter-wave integrated circuits and systems for wireless communications and cryogenic electronics for quantum computation.

Dr. Babaie was a recipient of the 2015–2016 IEEE Solid-State Circuits Society Pre-Doctoral Achievement Award. He serves as a Reviewer of the IEEE JOURNAL OF SOLID-STATE CIRCUITS and a committee member of ISSCC student research program (SRP).

EE1C11 Linear Circuits A

Circuit theory course for first year EE students, Part 1

EE1C21 Linear Circuits B

Circuit theory course for first year EE students, Part 2

EE4605 Integrated Circuits and Systems for Wireless Applications

Design and analysis of typical RF IC building blocks in a wireless transceiver

EE4615 Digital IC Design II

Designing digital CMOS circuit such as frequency dividers and time-to-digital (TDC) circuits

ET4371 Advanced Wireless Transceivers (Digital RF)

Digital RF/Microwave System, Digital-Passive, All-digital RF synthesizers, transmitters and receivers

ET4600 Wireless Concepts and Systems

Basic concepts of RF design, such as noise, nonlinearity, Impedance Matching, Analog/Digital Modulation, Pulse-shaping, Mixer, Oscillator, Link-budget, Transmitter/Receiver Architectures

WAtt LEvel transmitters at mm-waves

The WhALE project targets, employing complementary expertise in the field of electromagnetics, system integration and integrated circuit design, to develop the next generation of mmwave transmitters.

Digitally Dominant Analog Blocks for Ultra-Low-Power Wireless Sensor Network

All-digital phase-locked loops, inductor/capacitor-based DC-DC switching converters

  1. Cryo-CMOS Circuits and Systems for Quantum Computing Applications
    B. Patra; R. M. Incandela; J. P. G. van Dijk; H. A. R. Homulle; L. Song; M. Shahmohammadi; R. B. Staszewski; A. Vladimirescu; M. Babaie; F. Sebastiano; E. Charbon;
    IEEE Journal of Solid-State Circuits,
    Volume 53, Issue 1, pp. 309-321, Jan 2018. DOI: 10.1109/JSSC.2017.2737549
    Keywords: ... CMOS technology;Cryogenics;Oscillators;Process control;Quantum computing;Temperature;CMOS characterization;Class-F oscillator;cryo-CMOS;low-noise amplifier (LNA);noise canceling;phase noise (PN);quantum bit (qubit);quantum computing;qubit control;single-photon avalanche diode (SPAD).

  2. A Total-Power Radiometer Front End in a 0.25- $mu textm$ BiCMOS Technology With Low $1/f$ -Corner
    S. Malotaux; M. Babaie; M. Spirito;
    IEEE Journal of Solid-State Circuits,
    Volume 52, Issue 9, pp. 2256-2266, Sept 2017. DOI: 10.1109/JSSC.2017.2705659
    Keywords: ... 1/f noise;BiCMOS integrated circuits;Ge-Si alloys;carbon;low noise amplifiers;millimetre wave amplifiers;millimetre wave detectors;radiometers;semiconductor materials;white noise;1/f -noise corner;BiCMOS technology;LNA;NEP;SiGe:C;bandwidth 6 GHz;frequency 56 GHz;heterojunction bipolar transistor;high-sensitivity millimeter-wave total-power radiometer front-end;large area high resistive value load resistor;low noise-equivalent power;low transformation ratio;optimum bias;size 0.25 nm;two cascode stage low-noise amplifier;voltage-driven common-emitter square-law detector;white noise;wideband signal transfer;Antennas;Bandwidth;BiCMOS integrated circuits;Detectors;Radio frequency;Radiometry;Signal to noise ratio;Direct detection;flicker noise;low-noise amplifier (LNA);millimeter-wave (mm-wave);radiometer;square-law detector.

  3. Tuning range extension of a transformer-based oscillator through common-mode Colpitts resonance
    M. Shahmohammadi; M. Babaie; R. B. Staszewski;
    IEEE Trans. on Circuits and Systems I (TCAS-I),,
    Volume 64, Issue 4, pp. 836–846, April 2017. DOI: 10.1109/TCSI.2016.2625199

  4. 15.5 Cryo-CMOS circuits and systems for scalable quantum computing
    E. Charbon; F. Sebastiano; M. Babaie; A. Vladimirescu; M. Shahmohammadi; R. B. Staszewski; H. A. R. Homulle; B. Patra; J. P. G. van Dijk; R. M. Incandela; L. Song; B. Valizadehpasha;
    In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 264-265, Feb 2017. DOI: 10.1109/ISSCC.2017.7870362
    Keywords: ... Cryogenics;Oscillators;Program processors;Quantum computing;Semiconductor device modeling;Substrates;Temperature sensors.

  5. A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators
    M. Shahmohammadi; M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 51, Issue 11, pp. 2610-2624, Nov 2016. DOI: 10.1109/JSSC.2016.2602214
    Keywords: ... 1/f noise;CMOS integrated circuits;LC circuits;flicker noise;harmonics suppression;interference suppression;phase noise;radiofrequency oscillators;1/f noise upconversion reduction technique;CMOS technology;class-D oscillators;class-F oscillators;common mode excitations;current harmonics;differential mode excitations;equivalent resistance;flicker noise upconversion;inductor based tanks;phase noise;tank current;transformer based tanks;voltage biased RF CMOS oscillators;Capacitors;Harmonic analysis;Oscillators;Radio frequency;Resistors;Resonant frequency;Transistors;Class-D oscillator;class-F oscillator;digitally controlled oscillator;flicker noise;flicker noise upconversion;impulse sensitivity function (ISF);phase noise (PN);voltage-biased RF oscillator.

  6. A Fully Integrated Bluetooth Low-Energy Transmitter in 28 nm CMOS With 36\% System Efficiency at 3 dBm
    M. Babaie; F. W. Kuo; H. N. R. Chen; L. C. Cho; C. P. Jou; F. L. Hsueh; M. Shahmohammadi; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 51, Issue 7, pp. 1547-1565, July 2016. DOI: 10.1109/JSSC.2016.2551738
    Keywords: ... Bluetooth;CMOS digital integrated circuits;MOSFET circuits;constant current sources;digital phase locked loops;low-power electronics;oscillators;radio transmitters;radiofrequency integrated circuits;radiofrequency power amplifiers;1/f noise reduction;Bluetooth low-energy mode;CMOS transistors;all-digital PLL;class-E-F2 switching power amplifier;digitally controlled oscillator;direct DCO data modulation;efficiency 36 percent;energy-hungry RF circuits;fully integrated Bluetooth low-energy transmitter architecture;metal density;power 3.6 mW;power 5.5 mW;sampling rate reduction;size 28 nm;supply voltage reduction;switching current sources;threshold voltage;ultra-low power radios;CMOS integrated circuits;Inductors;Oscillators;Q-factor;Radio frequency;Radio transmitters;Switches;All-digital PLL;Bluetooth Low-Energy;Internet of Things (IoT);class-E/F 2 power amplifier;low-power transmitter;low-voltage oscillator;switching current-source oscillator.

  7. A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier
    Z. Zong; M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 51, Issue 5, pp. 1261-1273, May 2016. DOI: 10.1109/JSSC.2016.2528997
    Keywords: ... CMOS digital integrated circuits;field effect MIMIC;frequency multipliers;millimetre wave frequency convertors;millimetre wave oscillators;phase noise;FoM;PN performance;digital CMOS process;extraction techniques;figure-of-merit;frequency 20 GHz;frequency 57.8 GHz;frequency 60 GHz;frequency generator;frequency tuning range;implicit multiplier;local oscillator signal;mm-wave frequency generation technique;phase detection;phase noise performance;phase-locked loop;power efficiency;size 40 nm;third-harmonic boosting techniques;Boosting;Frequency conversion;Harmonic analysis;Oscillators;Phase locked loops;Power demand;Resonant frequency;60 GHz;60 GHz;PLL;frequency divider;harmonic boosting;harmonic extraction;implicit multiplier;mm-wave;oscillator;phase noise (PN);transformer.

  8. A Bluetooth low-energy (BLE) transceiver with TX/RX switchable on-chip matching network, 2.75mW high-IF discrete-time receiver, and 3.6mW all-digital transmitter
    F. W. Kuo; S. B. Ferreira; M. Babaie; R. Chen; L. c. Cho; C. P. Jou; F. L. Hsueh; G. Huang; I. Madadi; M. Tohidian; R. B. Staszewski;
    In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits),
    pp. 1-2, June 2016. DOI: 10.1109/VLSIC.2016.7573480
    Keywords: ... Bluetooth;Internet of Things;MOS integrated circuits;band-pass filters;oscillators;phase locked loops;radio transceivers;radio transmitters;1-pin direct antenna connection;Bluetooth LE;Bluetooth low-energy transceiver;CMOS;Internet-of-Things;IoT;MOS devices;TX/RX switchable on-chip matching network;The receiver;all-digital PLL;all-digital transmitter;discrete-time architecture;high-IF discrete-time receiver;integrated on-chip matching network;multirate charge-sharing bandpass filters;power 2.75 mW;power 3.6 mW;power consumption;size 28 nm;switched-current-source digitally controlled oscillator;transmitter;ultra-low-power transceiver;Band-pass filters;Capacitors;Gain;Power demand;Switches;System-on-chip;Transceivers.

  9. Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications
    M. Babaie;
    PhD thesis, Delft University of Technology, http://doi.org/10.4233/uuid:456a2f0e-529d-4bd8-91e0-4dba4f623f0f, 6 2016. Promotor: R.B. Staszewski.

  10. An Ultra-Low Phase Noise Class-F 2 CMOS Oscillator With 191 dBc/Hz FoM and Long-Term Reliability
    M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 50, Issue 3, pp. 679-692, March 2015.

  11. A fully integrated 28nm Bluetooth Low-Energy transmitter with 36% system efficiency at 3dBm
    F. W. Kuo; M. Babaie; R. Chen; K. Yen; J. Y. Chien; L. Cho; F. Kuo; C. P. Jou; F. L. Hsueh; R. B. Staszewski;
    In ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC),
    pp. 356-359, Sept 2015.

  12. 25.4 A 1/f noise upconversion reduction technique applied to Class-D and Class-F oscillators
    M. Shahmohammadi; M. Babaie; R. B. Staszewski;
    In 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers,
    pp. 1-3, Feb 2015.

  13. A 60 GHz 25% tuning range frequency generator with implicit divider based on third harmonic extraction with 182 dBc/Hz FoM
    Z. Zong; M. Babaie; R. B. Staszewski;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 279-282, May 2015.

  14. A 0.5V 0.5mW switching current source oscillator
    M. Babaie; M. Shahmohammadi; R. B. Staszewski;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 183-186, May 2015.

  15. A wideband 60 GHz class-E/F2 power amplifier in 40nm CMOS
    M. Babaie; R. B. Staszewski; L. Galatro; M. Spirito;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 215-218, May 2015.

  16. A 12mW all-digital PLL based on class-F DCO for 4G phones in 28nm CMOS
    Feng-Wei Kuo; R. Chen; K. Yen; Hsien-Yuan Liao; Chewn-Pu Jou; Fu-Lung Hsueh; M. Babaie; R. B. Staszewski;
    In 2014 Symposium on VLSI Circuits Digest of Technical Papers,
    pp. 1-2, June 2014.

  17. A Class-F CMOS Oscillator
    M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 48, Issue 12, pp. 3120-3133, Dec 2013.

  18. Ultra-low phase noise 7.2 #x2013;8.7 Ghz clip-and-restore oscillator with 191 dBc/Hz FoM
    M. Babaie; A. Visweswaran; Z. He; R. B. Staszewski;
    In 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 43-46, June 2013.

  19. A study of RF oscillator reliability in nanoscale CMOS
    M. Babaie; R. B. Staszewski;
    In 2013 European Conference on Circuit Theory and Design (ECCTD),
    pp. 1-4, Sept 2013.

  20. Third-harmonic injection technique applied to a 5.87-to-7.56GHz 65nm CMOS Class-F oscillator with 192dBc/Hz FOM
    M. Babaie; R. B. Staszewski;
    In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers,
    pp. 348-349, Feb 2013.

BibTeX support

Last updated: 18 Mar 2019